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Abstract

A background and test plan for the surface figure verification of a
large aperture lightweight UV mirror is presented. The task is to de-
velop the means to successfully verify that the Kodak FUV lightweight
50cm CA f/1.3 parabolic mirror meets the 6.3nm RMS surface figure
specification upon its immanent delivery. At the time of writing, the
mirror has not been received. However, initial tests limit the uncer-
tainty introduced by the test optics into the surface figure error mea-
surement to less than 0.008wvs RMS at spatial frequencies between
1.5mm and 30mm over the radial region 70mm-100mm. We expect
more accurate test setups to reduce this uncertainty. Our goal is to re-
duce the final uncertainty in the surface figure measurement to 3.15nm
or λ/200 Additionally, software has been developed which will enable
the measurement, mapping, and subtraction of error upon further test
setup refinement.



1 Introduction

My effort during my PIP II has fallen under two major tasks: Lightweight
Optics Internal Research and Development (LWIR&D), and the develop-
ment of the Solar High Angular Resolution Photometric Imager (SHARPI)
telescope. LWIR&D is tasked with developing the facilities and expertise
necessary to qualify large-aperture, smooth, ultra-precise lightweight optics.
The Optics Branch at NASA Goddard is scheduled to receive such a mirror
from Kodak: a 20inch f/1.3 parabola with an areal density of 19.75kg/m2

and a 6.3nm RMS surface figure error1 specification. The SHARPI telescope
would require a mirror of this size and quality to achieve its intended goal of
0.2arcsec solar imaging at 160nm, a state of the art solar resolution at that
wavelength (see Table 1). My effort has concentrated on making an in-house
verification of this ultra-precise surface figure specification possible.

Mission Quoted At Closest λ
Resolution to 160nm

arcsec nm

SOHO/EIT 2.6 30
TRACE 1 160
SERTS 1 30
Non-Solar Imaging Missions
Galex 3.3 160
FUSE 1.5 120
Proposed Missions
Solar-B/SOT 0.5 480
SHARPI 0.2 150

Table 1: Other UV Missions

Fabrication and verification of high precision mirrors, especially mirrors
used in the ultraviolet, requires high precision surface figure metrology. High
precision surface figure is of greater importance as the wavelength of interest
shortens. A mirror whose imaging ability is limited only by diffraction at
optical wavelengths2 quickly becomes limited by its surface figure error in
the UV3. A standard criteria for diffraction limited optics is that the surface

1Conventionally, surface figure error has a spatial frequency greater than 0.01mm−1.
However, interferometers can measure errors with higher spatial frequencies.

2400nm-780nm
3Ultraviolet, 10nm-400nm
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figure error cannot exceed λ/28 RMS. At optical wavelengths, this translates
to approximately 20nm RMS; at a UV wavelength of 160nm, however, the
criteria is 6nm RMS, assuming a perfect optical alignment. Surface figure
metrology is conventionally done with phase shifting interferometry at the
HeNe laser wavelength of 632.8nm. Therefore, to test the 6nm RMS criteria
with a HeNe laser requires a wavefront accuracy and precision exceeding
λ/100. At present, this lies in the domain of high precision surface figure
metrology.

High resolution UV imaging not only demands a high precision mirror
but also a large aperture. Once diffraction limited, the resolving power of
a telescope is directly proportional to λ/D, where λ is the wavelength and
D is the diameter of the primary optic. However, simply scaling the mirror
upwards increases the mass of the mirror drastically, making the delivery
of these telescopes to orbit—above the UV obscuring atmosphere—costly
and difficult. If the mirror is lightweighted, a larger diameter mirror can
be launched with a mass much less than traditional mirrors. Since this is
paramount to both Earth and Space Science, many lightweighting schemes
are under development, in test, or in use.

The f/1.3 annular parabola to be delivered by Kodak has a 508mm clear
aperture and 140mm inner diameter4 but weighs only 4.5kg (Table 2). This
glass mirror consists a thin faceplate and backplate fused to a water-jet cut
honeycomb core. The mirror is then lapped and ion-figured to the surface
specifications in Table 3. Table 4 compares the Kodak mirror to several
other mirrors of comparable surface figure, diameter, or areal density. The
combination of high precision surface figure, aperture, and areal density
make this mirror both unique and state of the art. Because of its unique
and demanding specifications, it will be a challenging task to verify that this
mirror meets its surface figure specification of 6.3nm RMS.

2 Surface Figure Verification Test Plan

2.1 Concept

There are three main methods commonly applied to perform global surface
figure metrology on a parabola: an auto-collimated double-pass test, a retro-
ball test, and a null lens test. To perform a double-pass test, a spherical

4The mirror is 55cm full aperture, but it was infeasible to bring the mirror within
specifications over the entire aperture.

5By Kodak’s calculation
6Without spherical aberration
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Material Fused Silica
Outer Diameter 558 mm
Clear Aperture 508 mm
Inner Diameter 139.7 mm
Edge Thickness 48.26 mm

Mass 4.54 kg
Areal Density 19.75 kg/m2

Lightweighting 81.52%5

Table 2: Lightweight Kodak UV Mirror, Physical Properties

Radius of Curvature at Vertex 1292.6 mm
Conic -1

Global Surface Figure Error (>10mm) 6.3 nm RMS
Mid-Frequency Surface Figure Error (1mm-10mm) 2.5 nm RMS

Microroughness (1µm-1mm) 1.0 nm RMS

Table 3: Lightweight Kodak UV Mirror, Surface Specifications

Areal Surface Figure Diameter Intended
Density Error RMS of Optic Band

notes kg/m2 nm cm

HST 180 6.36 240 UV, VIS
JWST – Goal 15 IR, VIS
SIRTF Beryllium 28 67 85 IR
SBMD LW Beryllium 9.8 19 53

– Ball Aerospace
SLMS – Shafer Foam Core 9.8 17 10.5 UV
FIRST (Herschel) SiC based 26 1310 135 IR
Demonstrator Mirror

Prop. SHARPI PM Fused Silica – 20 6.3 50.8 UV
– Kodak Honeycomb Core

FUSE OAP 54 16 37 UV
- unmounted

Table 4: Comparable Lightweight Mirrors
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wavefront is centered at the focus of the parabola, which is then collimated
by the mirror. The collimated beam is then retro-reflected by a flat, thereby
returning to the parabola and refocusing at the

Figure 1: Finding ∆W .

source of
the wavefront. The depar-
ture from a perfect spher-
ical wavefront at the focus
then represents the depar-
ture of the parabola and flat
from their ideal shape. To
determine the surface figure
error of the parabola to an
accuracy of less than λ/200
RMS, the reference flat can-
not induce an uncertainty
of greater magnitude. Tra-
ditionally, this has meant
that the flat’s surface error
could not be greater than
λ/200 RMS or some fraction
thereof. With higher res-
olution digital interferome-
ters, a technique of map-
ping the surface figure er-
ror of the reference flat and
then subtracting from the
final wavefront is possible.
The uncertainty in this sub-
traction still cannot exceed
some fraction of λ/200. Un-
fortunately, a 50.8cm flat
was not available, and more-
over, a precision calibration
of a 50cm flat to an uncer-

tainty of less than λ/200 was not feasible. However, the technique of sub-
tracting an optic’s aberration contribution to wavefront is a useful concept
and will be employed in tests where test optics can be precision tested.

The retro-ball test requires the generation of a collimated beam matching
the size of the test optic. The parabola focuses the collimated beam onto
a spherical reflective ball bearing centered at the focus. The ball reflects
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the light back to the parabola where it is re-collimated and returned to the
interferometer. By rotating the ball and averaging results, the uncertainty
that originates from the surface error of the sphere is minimized.7 Although
this source of uncertainty is minimized, the test still requires generating a
large collimated beam from an interferometer whose wavefront accuracy is
comparable to the λ/200 specification. We do not have access to such a
system, and a λ/200 RMS wavefront accuracy is difficult to achieve with a
50cm collimated beam. Calibration or acquisition of such an instrument is
not within the scope of this task; however, if the use of such a system might
become available, we would consider this a potential test.

The null lens test8 is a center of curvature test. Specifically, the null lens
aberrates the input beam so that the focii of the mirror surface become co-
located. In order for this to work, the null lens needs to aberrate the input
wavefront by twice the amount that the surface deviates from a sphere. In
figure 1, this wavefront error is 2∆W (θ). Defining θ′′ = π−θ′, using the law
of cosines, and manipulating the polar equation of a parabola, I find that:

W (θ′′) = R

√(
1

1 + cos θ′′
+ cos(θ′′)

)2

+
1
2

sin2 θ′′ (1)

∆W (θ′′) is then simply W (θ′′) − R. To analyze ∆W over an optic of a
particular f/#, θ′′ runs from 0 to θ′′max which is:

θ′′max = 2 tan−1
(

1
4 f/#

)
(2)

To transform θ′′ → θ, use the equation:

θ = sin−1 R sin θ′′

W (θ′′)(1 + cos θ′′)
(3)

Figure 2 shows ∆W over the diameter of our f/1.3 R = 1292.606mm
parabola. A common means of describing wavefront error is by Zernike
polynomials. Because ∆W is only a function of the radial distance on the
mirror, the angularly dependent Zernikes terms will not contribute. There-
fore, to derive the wavefront error required to do a null lens test on our
parabola, only the radial Zernike terms are pertinent. The first two radial
Zernike terms are insignificant as they represent piston (a constant) and
focus (which can be physically removed by refocusing). We are, however,

7As long as the ball is and stays properly centered.
8Or, similarly, any means of generating a parabolic wavefront
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Figure 2: Deviation of a f/1.3 1292.6mm radius parabola from a circle of
equal radius. The deviation is the distance between the parabola and circle
along a line projected from the center of the circle. Deviation is plotted as
a function of aperture height.

nm mm wvs @ 633nm Term
163267 0.1633 258.0 Focus
86702.1 0.0867 137.0 3rd Order Spherical Aberration
5.35583 5.4E-06 0.0085 5th Order Spherical Aberration
0.80646 0.0013 7th Order Spherical Aberration
0.00013 2.1E-07 9th Order Spherical Aberration
0.00001 1.9E-08 11th Order Spherical Aberration

Table 5: The RMS contribution of various Zernike terms to the total Zernike
fit on the of the parabola-sphere deviation.

focused on the various orders of spherical aberration. Here, they are listed
as radial Zernike terms 2 and higher. The transformation of this difference
into the radial Zernike polynomial set generates a infinite but convergent set
of Zernike coefficients. Figure 3 plots the various values of these terms as a
function of term number. Because our desired accuracy is on the nanome-
ter scale, the 5th and higher terms can be ignored, as they contribute an
insignificant amount. Therefore, the Zernike terms that will be relevant are
the 3rd, 5th, and 7th order spherical aberration. Table 5 shows the various
root mean squared (RMS) contributions from these Zernike terms over the
entire 2-D un-obscured f/1.3 parabola.

A refractive compound cemented null lens design was not found.
Airspaced compound lenses we undesirable because of alignment difficulties.
The difficulty is that we have an enormous amount of 3rd order spherical
aberration, leading to a complex null lens design. Additionally if an ex-
treme or ultra-precise lens is required, the lens would then have to be tested
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Figure 3: Magnitude of the normalized radial zernike coefficients (in nm)
as a function of term number for the fit to the difference between a f/1.3,
20in clear aperture parabola and a sphere of identical vertex curvature.
The term number is plotted along the x-axis and the normalized radial
Zernike term is plotted on the y-axis. Fits of various order are over-plotted:
40th order, 20th order, 10th order, 6th order, and 4th order. The lowest
order fit is represented by the thick blue line, and the highest order fit
is represented by the thin black line. It is apparent that the overlapping
terms are consistent over various order fits. For this parabola, the fifth and
higher terms contribute an insignificant amount compared to the desired
accuracy of our test. This corresponds to ninth order spherical aberration
and higher. Therefore, a null lens in this application must correct for 3rd-7th
order spherical aberration to within several nanometers.
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– leading to another difficult test.
However, because we are testing at the HeNe laser wavelength, we can

utilize a diffractive lens called a computer generated hologram (CGH). A
diffractive lens is a hologram created by etching a diffractive screen from a
substrate. The frequency of this screen is such that the first order diffraction
of the test beam through the screen creates the desired wavefront. In this
case, the frequency of the hologram is a function of radial distance from the
center, and creates the wavefront distortion equal to 2∆W . With the CGH,
it is possible to impart these extremely large spherical aberration terms into
the wavefront. However, CGH’s have not traditionally been used to the
λ/200 RMS accuracy we require. In fact, the manufacture’s tolerances on
a typical test setup contribute to a 7

100λ RMS surface figure error. The
intrinsic accuracy of the CGH, however, is not overwhelming. The stated
tolerances on the fabrication of the CGH are 1.8

100λ, and these tolerances
include several factors which can be accounted for. Clearly the CGH must
be qualified; however, the CGH test does offer us the ability to test an f/1.3
50.8cm parabola to our approximate accuracy with a minimum of cost. To
reach our desired accuracy, though, we must model, compensate for, and
subtract systematic errors.

2.2 Figure Verification Test Setup

Shown in Figure 5, the CGH Figure test involves four major optical com-
ponents: the interferometer, the transmission sphere, the CGH, and the
parabolic test piece. The interferometer is a MARK IV/GPI interferom-
eter. The transmission sphere takes the input beam and converts it to a
converging f/1.5 beam. 90mm in front of that focus, the CGH intercepts
the converging beam and imparts its characteristic aberration. The beam
then propagates to the mirror where it is retro-reflected back through the
CGH and the transmission sphere into the interferometer where the wave-
front is measured through phase shifting interferometry.

Currently, we do not have possession of the mirror. We are, however,
developing and fabricating the exact metrology fixtures. The emphasis of
the PIP II period was on qualifying the test optics involved in this test, as
well as developing the means to measure and account for them.

2.3 Test Flow

In order to successfully verify that the Kodak f/1.3 parabolic mirror meets
its 6nm RMS surface figure specification in a 0g environment, no test optic
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Figure 4: CGH Figure Test Setup

or model can introduce an error to the final surface figure error calculation
that would make the verification impossible. This includes the CGH, the
transmission sphere, and the 1g surface sag model that must be subtracted
from the measured surface figure error to yield the 0g surface figure error.
We do not require that each of these elements contribute less than a total
of λ/200 error. Rather, we intend to measure and subtract the error that
these elements imparts. Therefore, it is the uncertainty in the subtraction
which must not accumulate to more than a λ/200 error in the final result.

It is necessary to test each element in some way. Where other optics
or models are used to test these elements, those elements themselves must
be tested. Figure 5 shows the current test plan to accomplish the desired
certainty. This is a recursive process. Test setups have been improved,
optics have been refigured, and analyses been refined. All tests have been
and will be repeated until the desired accuracy has been met.

2.3.1 1g Sag Table

The mirror has been fabricated so that it has its correct figure while
experiencing no gravitational load. However, we must test it in 1g.
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Figure 5: Test Plan Flow

Figure 6: Wavefront aberration in the surface
figure test resulting from the 1g surface sag.

This leaves us with the
problem of anticipating the
surface sag and subtract-
ing it from the final mea-
sured result. Kodak’s FEM
was analyzed by Sandra
Irish, Code 542 – Mechan-
ical Analysis and Simula-
tion Branch. These results
were interpolated over a reg-
ular grid and converted into
a Zemax grid sag surface.
Figure 6 shows the expected
wavefront distortion caused
by the 1g sag— a RMS
wavefront error of 0.2 waves
or approximately 127nm.
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The vendor’s standard allocation for the model’s uncertainty is 5%, or
here a λ/200 uncertainty in the measurement of our figure error. This alone
is the desired uncertainty of our entire test. It is necessary to reduce this
uncertainty in some way. One proposed solution is to reverse the orientation
of the test mirror, so that it experiences a -1g load. In this case, the +1g
and -1g figure errors could be averaged to produce a check of the sag model.

2.3.2 Transmission Sphere

The transmission sphere is one of the primary elements of the CGH figure
verification test. In order to measure its contribution to the measured error,
the “absolute sphere test” is employed. The transmission sphere is tested
against a concave spherical mirror in three configurations. Using a linear
combination of these tests, it is possible to isolate the contribution of each
optic to the final measured wavefront. Because this measurement isolates
the contribution of each optic, it is considered an “absolute” test.9

The initial results were that the reference wavefront generated by the
transmission sphere had a wavefront aberration of 0.004wvs (2.5nm) RMS
± 0.0018wvs (1.1nm). 10 This accuracy and precision are on the order
required. Additionally, the concave reference sphere used in this test was
precision calibrated by the Zygo Corporation to an estimated accuracy of
0.001wvs. Their result for the RMS surface error of the sphere in our region
of interest is 0.006wvs RMS. This compares well with our measured RMS
surface error of 0.005wvs ± 0.0018wvs.

The final uncertainty introduced by the transmission sphere plus the
uncertainty from the CGH and remaining figure components must not ex-
ceed λ/200. The error introduced by the transmission sphere approximately
meets our final specification. Although presently leaving no room for other
sources of uncertainty, it will be put in the background until the other con-
tributions to our test error have been reduced to a comparable level. At
that point, this test will be repeated with a much more rigorous and precise
test setup. With this information, the affect of the transmission sphere will
be subtracted from our final result.

9For more details on this test, see appendix, or see the notes from the 22 April, 2003
presentation, “High Precision Figure Verification of a Lightweight UV Mirror.”

10There is some discussion to whether the results can be trusted to this precision because
of potential internal retrace errors.
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2.3.3 Computer Generated Hologram

Qualifying the CGH is the most challenging aspect of the test plan because
it imparts such a large amount of spherical aberration. Our initial plan was
to fabricate an independently verifiable smaller optic to take the place of the
50cm parabola. Unfortunately, because of the enormous amount of spherical
aberration in the wavefront, there is no easily tested optic that compensates
for the spherical aberration and retro-reflects while capturing the entire
beam. Instead, we chose to test a sub-aperture of the Kodak mirror. A
9.5” diameter parabola with the identical vertex radius was fabricated and
used to mock up the central region of the full aperture Kodak mirror. The
sub-aperture can then be independently tested in an auto-collimating double
pass test, and the results can be compared to a CGH test of the same piece.

The sub-aperture piece was fabricated with a diamond turning machine.
The error in the initial fabrication was over λ/2 RMS. This would not be
acceptable for a comparison between the two tests because the error in the
sub-aperture mirror would far exceed any difference between the double-pass
test and the CGH test. By compensating for the systematic radial diamond
turning errors, the radially symmetric error was reduced to 0.15wvs RMS.
Although this is not on the order of the required accuracy of the final test,
the measurements are more easily compared between the CGH and double-
pass test. Additional sub-aperture corrective cutting is planned to further
improve its figure.

Another consideration in this comparison between the double pass test
and the CGH test is the wavefront error contribution of the flat mirror to
the double pass measurement. A test of the flat shows that the surface
error over the 9.5” diameter is approximately 0.03wvs RMS. This was not
a concern in the initial tests when a gross comparison was desired. In fact,
it’s the contribution to the error in the double pass test is diminished for
two reasons: for one, the error is concentrated in the outer edge of the flat,
where there also is a good deal of dropout on the parabola, and secondly,
the flat only causes one reflection while the parabola reflects twice — and
this means the uncertainty in the flat is weighted by half. This error can be
taken into account, however, when it becomes important. In fact, the mirror
will be precision calibrated at NIST’s XCALIBIR facility to a pixel-to-pixel
accuracy of 0.001wvs RMS. With proper fiducials known and aligned, the
flat’s contribution to the final error can be subtracted and eliminated to a
degree that exceeds our required certainty.

The obvious downfall is that the outer annulus of the CGH corresponding
to the radial zone on the mirror between 4.75” and 10” is not qualified. In
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addition, this is where the largest wavefront distortion must take place. By
determining the departure between the two independent measurements as
a function of radius, we could conceivably do an extrapolation to the rest
of the CGH. However, that extrapolation would come with uncertainty. I
have proposed, therefore, that an off-axis portion in the outer annulus of
the Kodak mirror be available to test in a retro-ball setup while the entire
aperture is under test with the CGH. This would give us further insight into
the behavior of the CGH at the edge of the 50cm aperture.

3 Preliminary CGH Qualification Results

3.1 Double Pass Results

Measuring the sub-aperture parabola in the auto-collimating double-pass
setup had two purposes: to measure the radial error so that I could generate
a new compensating corrective cut profile for the diamond turning machine
and to characterize the surface figure error of the mirror to compare with
the results generated in the CGH test. For the corrective cut, we are only
interested in radial error only—that is, error that is only dependent on the
radius ρ as measured from the center of the piece, and not error that is
dependent on the angle θ to any particular point on the mirror. Because
diamond turning has an inherent radial symmetry, we expect to see the
radial error dominate.

Radially asymmetric errors could come from fabrication or alignment of
the test setup. Radially asymmetric fabrication errors would come from a
deviation in the diamond turning machine’s symmetry which would have a
periodic dependence on θ — such as a wobble of the mirror on the spindle
of the diamond turning machine. If reasonable attention is paid to setup
and execution of the cut, this θ dependent error is minimal compared to
the amount of radial error. Alignment errors, on the other hand, contribute
heavily to the θ dependent error.

The equipment used in these tests was not stable and repeatable enough
to minimize these radially asymmetric errors to within λ/10. A tolerance
analysis showed that this radially asymmetric error would be concentrated
in Zernike terms corresponding to 3rd order coma and astigmatism. These
are low spatial frequency errors; that is, the period of the errors are approx-
imately equal to some large fraction of the optic’s diameter. In the initial
absence of better alignment tools, the low spatial frequency radially asym-
metric errors were removed for both the generation of the compensating
corrective cut and the comparison between the CGH and the double-pass
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tests.
For both the corrective cut and the comparison between the CGH and

double-pass tests, we are interested in the error as a function of radius.
Therefore, we need to transform the cartesian coordinates of the CCD pix-
els to the polar coordinates of the mirror. This requires knowledge of where
the center of the piece is. Luckily, the diamond turning error marks can
serve as our guide, as they are almost perfectly symmetric about the cen-
ter of the mirror. To make the transformation, I first did a 2-D low order
Zernike fit to the data. (Figure 7(a),6(b)) For this fit, a reasonable approxi-
mation of the center is used; the residual is then examined. (Figure 7(c)) A
first guess coordinate is picked as the center, and the coordinates are trans-
formed into polar coordinates. Each x, y point now has a ρ, θ associated
with it. The mean and standard deviation are then calculated for 0.1mm
segments over ρ = [0, ρ] for all θ. The root sum square of these standard
deviations is calculated and minimized as a function of the x, y coordinate
of the center. The final projection of the residual into radial coordinates can
be seen in Figure 8(a). The spherical aberration associated with the 2-D
fit (Figure 8(b)) and the residual are then combined to create a total radial
profile(Figure 8(c)).

To generate the corrective cut, the radial profile is fit to radial Zernike
terms. The radial Zernike terms correspond to the Legendre polynomials as
a function of 2ρ2−1. An appropriate maximum order must be picked so that
the the error of the mirror exceeds the RMS residual to the radial Zernike
fit by several orders of magnitude. For the corrective cut, the Legendre
polynomial is re-sampled over the desired coordinates of the cut.11

The RMS of the total two dimensional measured phase is 0.25wvs while
the radial contribution to this is 0.15wvs. The magnitude of the remaining
radially asymmetric error is in agreement with what was expected from the
current alignment tolerances of the double-pass test.

3.2 CGH Sub-Aperture Test Results

Many of the methods used to analyze the double pass measurements are
re-applied to the CGH sub-aperture test. Modeling the current alignment
tolerances showed the misalignment will show up as low order radially asym-
metric error. Therefore, the same analysis techniques used on the sub-
aperture double pass data are utilized here to minimize the contribution of
the θ-dependent error introduced due to misalignment.

11More details on the corrective cutting process will be reviewed in a future memo once
we have exhausted the improvements of corrective cutting.
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(a) (b) (c)

Figure 7: Left to Right: (a) Measured phase, (b) 2-D Zernike Fit, and (c)
Residual to the fit, for the current sub-aperture diamond turned parabola
via the double pass test. The scale, at bottom, runs from 0wvs (at 632.8nm)
to 1.3wvs.
White indicates no data.

Figure 9(a) shows the measured phase from the CGH sub-aperture test.
The three major contributions to the error are 3rd order coma, 3rd order
astigmatism, and radial symmetric error. As in the double pass analysis,
the radially symmetric error is extracted (Figure 9(b)) and analyzed. With
that data, a radial profile is extracted (Figure 10).

3.3 Agreement of Tests

To compare these two results, it is first useful to compare what has been
removed from each measurement to make the comparison. Figure 11 shows
the θ-dependent error which has been removed for comparison. These terms
most likely result from misalignments in the test setups. For the double pass
setup, the main term which has been removed is astigmatism. The source of
this astigmatism from the double-pass auto-collimating setup is most likely
a boresight error. From the CGH measurement, both astigmatism and coma
have been removed. The most likely source of this error is the alignment of
the CGH. Micron decenters and arcminute tilts can create astigmatism and
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coma of this magnitude. It is imperative, then, to improve our alignment in
the future. We have procured several alignment tools for this purpose, and
both of these tests will be repeated.

Furthermore, because the tests cover two different regions, the systems
have a slightly different focus. In order to make a comparison, therefore,
it is necessary to select the region of comparison and to remove any focus
term over that region. The region that has been selected for comparison is
the radial zone between 70mm and 100mm.

Figure 12 shows the scatter of Z(ρ, θ) overlaid for both tests. Figure 13
shows the average of these scatter plots over 0.1mm segments. The scatter
of each line is approximately 0.02wvs RMS and the agreement between the
two averaged scatter plots is 0.006wvs RMS.

4 Conclusion

We have not received the mirror, yet significant progress has been made to
qualify the optics involved in the Kodak mirror surface figure verification.
The test plan involves many elements, both test optics and models. One of
the most crucial optical elements is the CGH. The CGH must be verified,
and to do so, it must be independently measured. A 9.5” parabolic mirror
representing a sub-aperture of the Kodak mirror has been fabricated to do
this verification. Its surface figure is measured with the CGH and also in
double pass. Currently, the problem of extrapolating this agreement to the
edge of the CGH remains. However, we have generated several concepts
to deal with this source of uncertainty. Meanwhile, the largest hurdle in
the qualification of the inner 9.5” of the CGH is the alignment of our test
setups. Several pieces of hardware have been procured for the purpose of
refining our setup. Despite this, the initial result is that the root summed
squared error in the test optics (CGH and Transmission Sphere) is less
than 0.008wvs RMS at spatial frequencies between 1.5mm and 30mm over
the radial region 70mm-100mm. However, the actual test optic error is
most likely less because the limit on the error reflects the uncertainty of
the alignment of our test setups. Once the alignment of the test setups is
improved, it is likely that the root sum square error in our test optics will
be less than 0.005wvs or λ/200 – allowing a successful verification of the
Kodak lightweight UV mirror.
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(a)

(b)

(c)

Figure 8: Top to Bottom: (a) Radial projection of residual, (b) Spherical
aberration terms from 2-D Zernike Fit, and (c) Total radial scatter.
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(a) (b)

Figure 9: Left to Right: (a) Measured phase and (b) Extracted radial portion
of the the sub-aperture parabola for the CGH test. The scale, at bottom,
runs from 0wvs (at 632.8nm) to 0.8wvs.

Figure 10: Radial profile of CGH error with low-order asymmetric Zernike
terms removed.
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(a) (b)

Figure 11: Left to Right: θ-dependent error removed from the: (a) CGH test
(b) double-pass test. The scale, at bottom, runs from 0wvs (at 632.8nm) to
1.2wvs.
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Figure 12: Scatter plots (Z(ρ, θ)) for both the CGH and double-pass tests.

Figure 13: Radial profiles binned over 0.1mm segments.
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